WBCS (Main) Exam Paper - VI Practice Set

Answers with Explanation

1. (a) ? $=369 \times \frac{1}{2} \times \frac{2}{3}=123$
2. (a) Let the length of bamboo be x metres.
\therefore Length of bamboo above water
$=\mathrm{x}-\frac{\mathrm{x}}{10}-\frac{5 \mathrm{x}}{8}$
$=\frac{40 x-4 x-25 x}{40}=\frac{11 x}{40}$
According to the question,
$\frac{11 x}{40}=2.75$
$\Rightarrow \mathrm{x}=\frac{2.75 \times 40}{11}=10$ metres.
3. (a) $\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}$
$=\frac{1}{3 \times 5} \times \frac{1}{5 \times 7}+\frac{1}{7 \times 9}+\frac{1}{9 \times 11}+\frac{1}{11 \times 13}$
$=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)$
$=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{1}{2}\left(\frac{13-3}{39}\right)=\frac{5}{39}$
4. (a) $\mathrm{HCF} \times \mathrm{LCM}=$ Product of two numbers
$\Rightarrow 8 \times \mathrm{LCM}=1280$
$\Rightarrow \mathrm{LCM}=\frac{1280}{8}=160$
5. (d) The greatest number of five digits is 99999 .

LCM of $3,5,8$ and 12

2	3	5	8	12
2	3	5	4	6
3	3	5	2	3
	1	5	2	1

खुাঙির্स
$\therefore \mathrm{LCM}=2 \times 2 \times 3 \times 5 \times 2=120$
After dividing 99999 by 120, we get 39 as remainder $99999-39=99960=(833 \times 120)$ 99960 is the greatest five digit number divisible by the given divisors.
In order to get 2 as remainder in each case we will simply add 2 to 99960 .
\therefore Greatest number $=99960+2=99962$
6. (c) First of all we find the HCF of 945 and 2475.
$\mathrm{HCF}=45$
Illustration :

क्याप्षिर्स
\therefore Maximum number of animals in each flock
$=45$
Required total number of flocks
$=\frac{945}{45}+\frac{2475}{45}=21+55=76$
7. (d)
d) Expression $=1-\frac{\mathrm{a}}{1-\frac{1}{1+\frac{\mathrm{a}}{1-\mathrm{a}}}}$ is

ख्यापिएस
$=1-\frac{\mathrm{a}}{1-\frac{1}{\frac{1-\mathrm{a}+\mathrm{a}}{1-\mathrm{a}}}}$
$=1-\frac{\mathrm{a}}{1-\frac{1}{\frac{1}{1-\mathrm{a}}}}$
$=1-\frac{a}{1-(1-a)}=1-\frac{a}{1-1+a}$
$=1-1=0$
8. (c) Expression
$=25-5[2+3\{2-2(5-3)+5\}-10] \div 4$
$=25-5[2+3\{2-2 \times 2+5\}-10] \div 4$
$=25-5[2+9-10] \div 4$
$=25-5 \div 4=25-\frac{5}{4}$
$=\frac{100-5}{4}=\frac{95}{4}=23.75$
9. (b) $\sqrt{0.01}+\sqrt{0.81}+\sqrt{1.21}+\sqrt{0.0009}$ is
$=0.1+0.9+1.1+0.03=2.13$
10. (b) Total sum of x numbers $=x y^{2}$

Total sum of y numbers $=y x^{2}$
\therefore Required average
आسেভির্র
$=\frac{x y^{2}+y x^{2}}{x+y}=\frac{x y(y+x)}{x+y}=x y$
11. (a) Total expenditure $=120 \times 7=$ Rs. 840

Total expenditure of 4 boys $=150 \times 4=₹ 600$
Total expenditure of 3 girls $=840-600$
$=$ ₹ 240
\therefore Their average expenditure $=\frac{240}{3}=₹ 80$
12. (b) Last number $=$ Sum of 20 numbers - sum of first 12 numbers - sum of next 7 numbers
$=20 \times 12-11 \times 12-7 \times 10$
$=240-132-70=38$
13. (c) $\frac{\mathrm{p}}{1}=\frac{\mathrm{q}}{2}=\frac{\mathrm{r}}{4}=\mathrm{k}$ (let)
$\Rightarrow \mathrm{p}=\mathrm{k}, \mathrm{q}=2 \mathrm{k}, \mathrm{r}=4 \mathrm{k}$
$\therefore \sqrt{5 \mathrm{p}^{2}+\mathrm{q}^{2}+\mathrm{r}^{2}}$
फाष्थिर्स
$=\sqrt{5 \mathrm{k}^{2}+4 \mathrm{k}^{2}+16 \mathrm{k}^{2}}=\sqrt{25 \mathrm{k}^{2}}$
$=5 \mathrm{k}=5 \mathrm{p}$
14. (b) $\mathrm{A} \times \frac{2}{3}=\mathrm{B} \times \frac{4}{5}$
$\Rightarrow \frac{\mathrm{A}}{\mathrm{B}}=\frac{4}{5} \times \frac{3}{2}=6: 5$
15. (b) Let the number to be added be z .
$\therefore \frac{\mathrm{x}+\mathrm{z}}{\mathrm{y}+\mathrm{z}}=\frac{\mathrm{p}}{\mathrm{q}}$
$\Rightarrow \mathrm{qx}+\mathrm{zq}=\mathrm{py}+\mathrm{zp}$
$\Rightarrow \mathrm{zp}-\mathrm{zq}=\mathrm{qx}-\mathrm{py}$
$\Rightarrow \mathrm{z}(\mathrm{p}-\mathrm{q})=\mathrm{qx}-\mathrm{py}$
फ़ाप्जिएन
$\Rightarrow \mathrm{z}=\frac{\mathrm{qx}-\mathrm{py}}{\mathrm{p}-\mathrm{q}}$
16. (d) Since 18% of the students neither play football nor cricket.
It means 82% of the students either play football or cricket or both.
Using set theory
$\therefore \mathrm{n}(\mathrm{A} \cup \mathrm{B})=\mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})-\mathrm{n}(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow 82=40+50-\mathrm{n}(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow \mathrm{n}(\mathrm{A} \cap \mathrm{B})=90-82=8$
$\therefore 8 \%$ students play both games.
17. (a) $x \times \frac{125}{100}=100$

खुাপ্ভির্স
$\Rightarrow \mathrm{x}=\frac{100 \times 100}{125}=80$
18. (b) Let the number be x
then, $x \times \frac{90}{100}=30$
$\Rightarrow \mathrm{x}=\frac{3000}{90}=\frac{100}{3}=33 \frac{1}{3}$
19. (b) Let the C.P. of the watch be ₹ 100 .
\therefore Its S.P. $=₹ 125$
\therefore Profit per cent on its S.P.
$=\frac{\text { Profit }}{\text { S.P }} \times 100=\frac{25}{125} \times 100=20 \%$
20. (d) Let the C.P. of one orange $=1$
\therefore C.P. of 40 oranges $=₹ 40$
and S.P. of 40 oranges $=₹ 50$
\therefore Profit $=(50-40)=₹ 10$
ख্যাণ্ভির্স
\therefore Profit $\%=\frac{10}{40} \times 100=25 \%$
21. (a) Let the cost price of 1 book be x
\therefore Cost price of 3 books $=3 \mathrm{x}$ and cost price of 12 books $=12 \mathrm{x}$
Selling price of 12 books $=1800$
$=12 \mathrm{x}+3 \mathrm{x}=15 \mathrm{x}$
$\Rightarrow 15 \mathrm{x}=1800$
$\therefore \mathrm{x}=\frac{1800}{15}=120$
The cost price of each book $=₹ 120$
22. (c) Equivalent discount
$=\left(15+10-\frac{15 \times 10}{100}\right) \%=23.5 \%$
23. (d) Single equivalent discount for consecutive discounts of $\mathrm{x} \%$ and $\mathrm{y} \%$
$=\left(x+y-\frac{x y}{100}\right) \%$
खुण্িির্स
24. (d) Let the CP of article be ₹ 100 .
\therefore Marked price $=₹ 140$
S.P. $=\frac{140 \times 80}{100}=₹ 112$
\therefore Gain per cent $=12 \%$
25. (c) Difference in rate
$=\left(8-7 \frac{3}{4}\right) \%=\frac{1}{4} \%$

Let the capital be ₹x.
$\therefore \frac{1}{4} \%$ of $\mathrm{x}=61.50$
$\Rightarrow \mathrm{x}=61.50 \times 100 \times 4=₹ 24600$
26. (b) Let the amount lent at 4% be x
\therefore Amount lent at $5 \%=(60000-\mathrm{x})$
According to the question,
$\frac{(60000-x) \times 5 \times 1}{100}+\frac{x \times 4 \times 1}{100}=2560$
$\Rightarrow 300000-5 \mathrm{x}+4 \mathrm{x}=256000$
$\Rightarrow \mathrm{x}=300000-256000=44000$
27. (b) Principal $=₹ x$

Amount $=₹ 2 \mathrm{x}$
\therefore Interest $=2 \mathrm{x}-\mathrm{x}=₹ \mathrm{x}$
\therefore Rate $=\frac{\text { S.I. } \times 100}{\text { Principal } \times \text { Time }}$
$=\frac{\mathrm{x} \times 100}{\mathrm{x} \times 8}=\frac{25}{2}$
$=12.5 \%$ per annum
28. (c) Amount
$=6000\left(1+\frac{10}{100}\right) \times\left(1+\frac{\frac{1}{2} \times 10}{100}\right)$
$=6000 \times \frac{11}{10} \times \frac{21}{20}=₹ 6930$
\therefore C.I. $=₹(6930-6000)=₹ 930$
29. (b)
C.I. $=P\left[\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}-1\right]$
$=5000\left[\left(1+\frac{10}{100}\right)^{3}-1\right]$
$=5000\left[\left(\frac{11}{10}\right)^{3}-1\right]$
C.I. $=\frac{5000 \times 331}{1000}=₹ 1655$
30. (d) C.I. $=\mathrm{P}\left[\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}-1\right]$

$246=\mathrm{P}\left[\left(1+\frac{5}{100}\right)^{2}-1\right]$
$\Rightarrow 246=\mathrm{P}\left[\left(\frac{21}{20}\right)^{2}-1\right]$
$\Rightarrow 246=\mathrm{P}\left(\frac{441-400}{400}\right)$
$\Rightarrow 246=\frac{41 \mathrm{P}}{400} \Rightarrow \mathrm{P}=\frac{246 \times 400}{41}=₹ 2400$
\therefore SI $=\frac{\text { Principal } \times \text { Time } \times \text { Rate }}{100}$
$=\frac{2400 \times 3 \times 6}{100}=₹ 432$
31. (b) $\mathrm{M}_{1} \mathrm{D}_{1} \mathrm{~T}_{1}=\mathrm{M}_{2} \mathrm{D}_{2} \mathrm{~T}_{2}$
$\Rightarrow 15 \times 20 \times 8=20 \times 12 \times \mathrm{T}_{2}$
$\Rightarrow \mathrm{T}_{2}=\frac{15 \times 20 \times 8}{20 \times 12}=10$ hours
32. (c) Men Working hours Days

$\left.\therefore \begin{array}{l}28: 16 \\ 12: 14\end{array}\right\}:: 12: \mathrm{x}$
$\Rightarrow 28 \times 12 \times \mathrm{x}=16 \times 14 \times 12$
$\Rightarrow \mathrm{x}=\frac{16 \times 14 \times 12}{28 \times 12}=8$ days
33. (d) Here, $x=18, y=12, m=3$

Total time taken
$=\left(\frac{y+m}{x+y}\right) x=\left(\frac{12+3}{18+12}\right) \times 18=9$ days
34. (c) Part of the tank filled in 1 hour by pipe $\mathrm{A}=\frac{1}{2}$

Part of the tank filled by both pipes in1 hour
$=\frac{1}{2}+\frac{1}{6}=\frac{3+1}{6}=\frac{2}{3}$
So, Time taken to fill $\frac{2}{3}$ part $=60$ minutes
\therefore Time taken to fill $\frac{1}{2}$ part
$=\frac{60 \times 3}{2} \times \frac{1}{2}=45$ minutes
कुपाष्डिर्य
\therefore The tank will be filleld at 11:45 A.M.
35. (d) Let the inflow fill the tank in x hours.
$\therefore \frac{1}{\mathrm{x}}-\frac{1}{2 \mathrm{x}}=\frac{1}{36}$
[leakage being half of inflow]
$\Rightarrow \frac{2-1}{2 \mathrm{x}}=\frac{1}{36}$
खाणिির্स
$\Rightarrow 2 \mathrm{x}=36$
$\Rightarrow \mathrm{x}=\frac{36}{2}=18$ hours
36. (c) Let the capacity of the tank be x gallons.

Quantity of water filled in the tank in 1 minute when all the pipes A, B and C are opened
simultaneously $=\frac{x}{20}+\frac{x}{24}-3$
According to the question,
$\frac{x}{20}+\frac{x}{24}-3=\frac{x}{15}$
$\Rightarrow \frac{\mathrm{x}}{20}+\frac{\mathrm{x}}{24}-\frac{\mathrm{x}}{15}=3$
$\Rightarrow \frac{6 \mathrm{x}+5 \mathrm{x}-8 \mathrm{x}}{120}=3$
खाভिির্स
$\Rightarrow 3 \mathrm{x}=3 \times 120$
$\Rightarrow \mathrm{x}=\frac{3 \times 120}{3}=120$ gallons
37. (d) Speed of the man $=5 \mathrm{~km} / \mathrm{hr}$
$=5 \times \frac{1000}{60} \mathrm{~m} / \mathrm{min}=\frac{250}{3} \mathrm{~m} / \mathrm{min}$
Time taken to cross the bridge $=15$ minutes
Length of the bridge $=$ speed \times time
$=\frac{250}{3} \times 15 \mathrm{~m}=1250 \mathrm{~m}$
38. (b) Speed of train $=\frac{\text { Distance }}{\text { Time }}$

खাভিভির্ম
$=\frac{10}{\frac{12}{60}} \mathrm{kmph}=\frac{10 \times 60}{12}=50 \mathrm{kmph}$
New speed $=45 \mathrm{kmph}$
\therefore Required time $=\frac{10}{45}$ hour
$=\frac{2}{9} \times 60$ minutes $=\frac{40}{3}$ minutes
$=13$ minutes 20 seconds
39. (b) Speed of train $=60 \mathrm{kmph}$ Time $=210$ minutes

क्राप्षिज्य
$=\frac{210}{60}$ hours
or $\frac{7}{2}$ hours
Distance covered $=60 \times \frac{7}{2}=210 \mathrm{~km}$
Time taken at 80 kmph
$=\frac{210}{80}=\frac{21}{8}$ hours $=2 \frac{5}{8}$ hours
40. (a) Speed of current
$=\frac{1}{2}$ (Rate downstream - Rate upstream $)$
$=\frac{1}{2}(12-6) \mathrm{kmph}=3 \mathrm{kmph} \quad[$ Rate
downstream $\left.=\frac{1}{5} \times 60=12 \mathrm{kmph}\right]$
41. (b) Let the speed of boat in still water be x kmph , then
$\frac{12}{x+3}+\frac{12}{x-3}=3$
ত্যা|্ভির্স
$\Rightarrow 12\left(\frac{\mathrm{x}-3+\mathrm{x}+3}{(\mathrm{x}+3)(\mathrm{x}-3)}\right)=3$
$\Rightarrow 4 \times 2 \mathrm{x}=\mathrm{x}^{2}-9$
$\Rightarrow \mathrm{x}^{2}-8 \mathrm{x}-9=0$
$\Rightarrow \mathrm{x}^{2}-9 \mathrm{x}+\mathrm{x}-9=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-9)+1(\mathrm{x}-9)=0$
$\Rightarrow(\mathrm{x}-9)(\mathrm{x}+1)=0$
$\Rightarrow \mathrm{x}=9$ because $\mathrm{x} \neq-1$
\therefore Speed can't be negetive.
Hence, speed of boat in still water $=9 \mathrm{kmph}$
42. (c) Let the distance be xkm .

Speed upstream $=5-1$
$=4 \mathrm{kmph}$
Speed downstream
$=5+1=6 \mathrm{kmph}$
$\therefore \frac{\mathrm{x}}{6}+\frac{\mathrm{x}}{4}=1$
শ্ডাভি氏র
$\Rightarrow \frac{2 \mathrm{x}+3 \mathrm{x}}{12}=1$
$\Rightarrow 5 \mathrm{x}=12$
$\Rightarrow \mathrm{x}=\frac{12}{5}=2.4 \mathrm{~km}$
43. (b) the side of square be a units.

Area of this square $=a^{2}$
The diagonal of square $=\sqrt{2} a$
\therefore Area of square $=2 \mathrm{a}^{2}$
\therefore Required ratio $=\mathrm{a}^{2}: 2 \mathrm{a}^{2}=1: 2$
44. (b) Net Effect on area of rectangle
$=\left(20+25+\frac{20 \times 25}{100}\right) \%=50 \%$
$\left[\because\right.$ Net $\%$ change $\left.=\frac{a+b+a b}{100}\right] \%$
45. (c)

$\mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=16 \mathrm{~cm}$;
$\Rightarrow \mathrm{AO}=8 \mathrm{~cm}$
$\therefore \mathrm{BO}=\sqrt{10^{2}-8^{2}}$
$=\sqrt{100-64}$
$=\sqrt{36}=6 \mathrm{~cm}$
$\therefore \mathrm{BD}=12 \mathrm{~cm}$
Hence, Area of rhombus $=\frac{1}{2} \mathrm{~d}_{1} \mathrm{~d}_{2}$
$=\frac{1}{2} \times 16 \times 12=96 \mathrm{~cm}^{2}$
46. (c) Perimeter of regular hexagon
$=$ Perimeter of equilateral triangle.
i.e. If a side of the regular hexagon be x units, then side of triangle $=2 \mathrm{x}$ units.
\therefore Required ratio
$=6 \frac{\sqrt{3}}{4} x^{2}: \frac{\sqrt{3}}{4}(2 x)^{2}$
= $6: 4=3: 2$
47. (d) Let the sides be $3 x, 4 x$ and $5 x$ respectively.

Here, $(3 \mathrm{x})^{2}+(4 \mathrm{x})^{2}=(5 \mathrm{x})^{2}$
Hence, the triangle is right angled.
$\therefore \frac{1}{2} \times 3 \mathrm{x} \times 4 \mathrm{x}=216$
$\Rightarrow 6 x^{2}=216 \Rightarrow x^{2}$
$=\frac{216}{6}=36$
$\therefore \mathrm{x}=\sqrt{36}=6$
खुাভিভ্র
Perimeter of triangle
$=(3 \mathrm{x}+4 \mathrm{x}+5 \mathrm{x}) \mathrm{cm}=12 \mathrm{x} \mathrm{cm}$
$=12 \times 6=72 \mathrm{~cm}$
48. (b) Radius of the circle $=\frac{100}{2 \pi} \mathrm{~cm}$

When a square is inscribed in the circle, diagonal of the square is equal to diameter of the circle.
\therefore Diagonal of square
$=2 \times \frac{100}{2 \pi}=\frac{100}{\pi} \mathrm{~cm}$
\therefore Side of square $=\frac{\text { Diagonal }}{\sqrt{2}}$
$=\frac{100}{\sqrt{2} \pi}=\frac{50 \sqrt{2}}{\pi} \mathrm{~cm}$.
49. (c) $\frac{1}{\sqrt{3}+\sqrt{4}}$

$=\frac{1}{\sqrt{3}+\sqrt{4}} \times \frac{\sqrt{4}-\sqrt{3}}{\sqrt{4}-\sqrt{3}}$
$=\frac{\sqrt{4}-\sqrt{3}}{4-3}=\sqrt{4}-\sqrt{3}$
Similarly,
$\frac{1}{\sqrt{4}+\sqrt{5}}=\sqrt{5}-\sqrt{4}$. so on
\therefore Expression
$=\sqrt{4}-\sqrt{3}+\sqrt{5}-\sqrt{4}+\sqrt{6}-\sqrt{5}+\sqrt{7}-\sqrt{6}+$
$\sqrt{8}-\sqrt{7}+\sqrt{9}-\sqrt{8}$
$=\sqrt{9}-\sqrt{3}=3-\sqrt{3}$
50. (b) Expression

$$
\begin{aligned}
& =\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}-\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} \\
& =\frac{(\sqrt{3}+\sqrt{2})^{2}-(\sqrt{3}-\sqrt{2})^{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}
\end{aligned}
$$

$=\frac{3+2+2 \sqrt{6}-3-2+2 \sqrt{6}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}$
फ्याप्रिएन
$=\frac{4 \sqrt{6}}{3-2}=4 \sqrt{6}$
51. (b) Diamond is a transparent precious stone of pure carbon. Similarly, corundum is equivalent to Ruby.
52. (c) The second term is antonym of the first term. Hence, Roof : Floor.
53. (b) Coldness is the inherent property of ice. Similarly, gravitation is the property of Earth.
54. (c) Editor is responsible for the production of newspaper. Similarly, author writes novel.
55. (b) $18 \times 2=36$ and
$36-6=30$
Therefore,
$36 \times 2=72$ and $72-6=66$
56. (b) $25=5 \times 5$
and $37=(5+1)^{2}+1$
$49=7 \times 7$
and $?=(7+1)^{2}+1=65$
57. (a) $42-(7)^{2}-7=49-7$
$56=(8)^{2}-8=64-8$
Similarly,
$110=(11)^{2}-11=121-11$
Now, $(12)^{2}-12=144-12=132$
58. (d)

So C and B are daughters of D.
So, A is uncle of D's daughter (B and) C.
59. (a) The son of P is brother of R and S .
Q is uncle of R and S.
60. (b) Only son of woman's grandfather means the father of woman. Man's brother's father is the father of that woman.
Therefore, the woman is sister of that man.
61. (b)

$+\Rightarrow \div$	$\div \Rightarrow x$
$x \Rightarrow-$	$-\Rightarrow+$

Option (1)
$18 \div 6-7+5 \times 2=20$
or, $18 \times 6+7 \div 5-2=20$
or, $108+\frac{7}{5}-2=20$
or, $\frac{540+7-10}{5}=20$
or, $547-10 \neq 20 \times 5$
Option (2)
$18+6 \div 7 \times 5-2=18$
or, $18 \div 6 \times 7-5+2=18$
or, $3 \times 7-5+2=18$
or, $21-5+2=18$
62. (c)

$+\Rightarrow-$	$\div \Rightarrow+$
$-\Rightarrow \times$	$\times \Rightarrow \div$

Option (1)
$46-10+10 \times 5=92$
or, $46 \times 10-10 \div 5=92$
or, $460-2 \neq 92$
Option (2)
$265+11-2 \times 14=22$
or, $265-11 \times 2 \div 14=22$
or, $265-\frac{22}{14} \neq 22$
Option (3)
$66 \times 3-11+12=230$

or, $66 \div 3 \times 11-12=230$
or, $22 \times 11-12=230$
or, $242-12=230$
63. (d) $4 \times 6 \div 2-4+8=16$
$\Rightarrow 4 \times 3-4+8=16$
$\Rightarrow 12-4+8=16$
64. (b) In all other pairs of numbers the difference between the two numbers is of 25 .
$62-37=25$
$85-60=25$
$103-78=25$
But, $74-40=34$
65. (b) The second number is three times the first number except in the case of option (2).
$81 \times 3=243$
$64 \times 3=192$
$25 \times 3=75$
क्याप्িिर्य
But, $16 \times 4=64$
66. (a) Except in the number pair $94-7$, in all others we get the second number by dividing the first number by 7 .
67. (c) 81 is a perfect square.
68. (b)

आ M্ভির্स

Now she if facing towards west.
69. (b)

Now, he was going towards south.
70. (b)

71. (a)

Required distance $=x y-y B=(8-7) \mathrm{km}$ $=1 \mathrm{~km}$
72. (a) Day before yesterday was

Thursday.
Today is Saturday.
Tomorrow will be Sunday.
73. (c) Tomorrow will be Thursday.

Thursday +3 Days = Sunday
74. (a) The year 1996 was a Leap Year.

Number of days remaining in the 1996
= $366-26=340$ days
= 48 weeks 4 odd days

1997, 1998 and 1999 together have 3 odd days.
2000 was a Leap year
Days upto 15th August 2000
$31+29+31+30+31+30+31+15=$ 228 days
$\frac{228}{7}=32$ weeks 4 odd days खाভिए্स
Now, total number of odd days
$=4+3+4=11$
$\frac{11}{7}=1$ week 4 odd days
15th August 2000 was 4 days beyond Friday, i.e., Tuesday.

75 (b)

76. (d)

77. (d)

78. (c)

79. (c) $\mathrm{D}=4$ and

B	A	D
\downarrow	\downarrow	\downarrow
2	+1	+

Similarly,

$$
\begin{array}{ccc}
\mathrm{A} & \mathrm{~N} & \mathrm{~T} \\
\downarrow & \downarrow & \downarrow \\
1 & +14+20=35
\end{array}
$$

80. (b) $\mathrm{D}=4$, i.e., Position Number is English alphabet

C	O	V	E	R
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
3	+	$15+$	$22+$	5

Therefore,

B	A	S	I	S	धुाप्जियन

81. (c) $\begin{array}{lllllll}9 & 2 & 4 & 0 & 7 & 1\end{array}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
B $\quad \mathrm{S} \quad \mathrm{E} \quad \mathrm{U}$ A \quad C
82 (b) In the given word there are only two Ps while in the word PEPPER there are three Ps.
82. (a) There is only one ' L ' in the keyword while there are two Ls in the word LIBERAL.
83. (d) There is no 'I' letter in the given word. Therefore, the word GREGARIOUS cannot be formed.
84. (a) We can align the premises by changing their order :
Some citizens are soldiers,

All soldiers are men.

We know that
I + A \rightarrow I type conclusion
Thus, our derived conclusion would be :
"Some citizens are men".
This is conclusion on I.
86. (d) We can align the premises by converting the second premise.
All Americans are English speaking

No English speakers are Eskimos
We know that,
$\mathrm{A}+\mathrm{E} \rightarrow \mathrm{E}$ type conclusion
Thus, our derived conclusion would be:
"No Americans are Eskimos."
Conclusion I is the converse of the derived conclusion.
Conclusion II is the converse of second premise.
87. (b) We can align the premises by converting the second premise.
All children are playful.
क्याप्डिर्य

Some playfuls are animals.

We know that,
$\mathrm{A}+\mathrm{I} \rightarrow$ No conclusion.
88. (b) The original position of Hema from the left $=$ 9th
Therefore, her position from right
$=16-9+1=8$ th
89. (b) The rank of Suresh $=28$ th

फुणाष्डिर्य
$\longrightarrow \mathrm{R} \cdot \cdots$ Students $\begin{array}{r}\text { 28th } \\ \mathrm{S}\end{array}$
90. (c) LEFT

RIGHT
$\xrightarrow{10 \text { persons }} \stackrel{11 \text { th }}{\mathrm{A}} \cdots \cdots \stackrel{\mathrm{B}}{10 \text { th }} \stackrel{9}{4} \stackrel{\text { persons }}{ }$
After interchanging the position

Total number of persons in the rows
$=10+1+6+1+9=27$
91. (b) First of all take the product of all the numbers given outside the square and divide it by 10 to get the number inside the square.

1st Figure

$5 \times 3 \times 4 \times 2=120$
$120 \div 10=12$
শुण্ভির্स

2nd Figure

$5 \times 6 \times 2 \times 3=180$
$180 \div 10=18$
3rd Figure
$5 \times 2 \times 2 \times 9=180$
$180 \div 10=18$
92. (c) The central number is the sum of square roots of all the four numbers located at the corners in the given arrangement.
1st Figure
$\sqrt{4}=2 ; \quad \sqrt{16}=4 ;$
$\sqrt{9}=3 ; \quad \sqrt{25}=5$
Now, $2+4+3+5=14$

2nd Figure

$\sqrt{9}=3 ; \quad \sqrt{49}=7 ;$
$\sqrt{36}=6 ;$
$\sqrt{1}=1$
Now, $3+7+6+1=17$
93. (b) $8 \times 2=16$ and $8 \times 4=32$
$9 \times 2=18$ and $9 \times 4=36$
$10 \times 2=20$ and $10 \times 4=40$
94. (c) In each arrangement the product of the upper
two numbers is equal to the bottom number.
1st arrangement
$5 \times 4=20$
2nd arrangement
$8 \times 8=64$
3rd arrangement
$6 \times 6=36$
95. (c) The sum of the squares of the upper two numbers is equal to the lower number in each figure.

First Figure

$(2)^{2}+(4)^{2}=4+16=20$
Second Figure
$(3)^{2}+(9)^{2}=9+81=90$
Third Figure
$(1)^{2}+(7)^{2}=1+49=50$
96. (a) Meaningful order
a. Pulp
\downarrow
c. Paper
\downarrow
b. Print

काष्थिर्य
\downarrow
e. Publish
\downarrow
d. Purchase
97. (d) Logical order of the given words :
(c) Egg
\downarrow
(d) Worm
\downarrow
(b) Cocoon
\downarrow
(a) Butterfly
98. (c) Author writes with pen on paper. And as such, book is published. A large number of books are kept in library. Thus, Meaningful order :
(c) Author
\downarrow
(e) Pen
\downarrow
(a) Paper
(d) Book
\downarrow
(b) Library
99. (c) When ' 2 ' is at the bottom, number ' 1 ' will be on the top.
100. (b) The numbers 2, 4, 5 and 6 cannot be on the face opposite to 3 .
The numbers $1,3,4$ and 6 cannot be on the face opposite to 5 .
Therefore, 2 lies opposite 5 . Clearly, 4 lies opposite 6.

